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ABSTRACT This study presents a novel application of artificial neural network (ANN) to develop a model 
for predicting compression index (Cc) of cohesive soils from their index properties. The model was trained 
using data from 347 undisturbed samples on a variety of cohesive soils from Northern Jakarta. It takes up to 
three variables as inputs: specific gravity (Gs), liquid limit (LL), and plastic limit (PL). The model was tested 
on a separate dataset of 117 samples and found to have a strong capability to predict Cc values when compared 
to some reference correlations. The ANN model has demonstrated good performance for each set by 
producing overall error of 29.6%, compared to 38.1% and 30.5% for the empirical formulas. This study shows 
that the application of ANN offers an essential advancement in this area, helping to overcome the limitation 
of conventional statistical correlation. 

KEYWORDS Artificial neural network; Non-linear Multivariate Analysis; Compression Index; Northern 
Jakarta Cohesive Soil. 

 

 

1 INTRODUCTION 

Soils are naturally compressible, be subjected to volume changes in response to applied stresses 
(Balasubramaniam & Brenner, 1981). This phenomenon consists of three phases: immediate, 
primary consolidation, and secondary consolidation settlements (Das & Sobhan, 2018). Soils with 
high plasticity are predominantly encountered in North Jakarta Bay's, and the soil often experiences 
high consolidation settlement. 

Assessing soil consolidation properties through testing often require a lot of time and geotechnical 
drilling operations yield only a limited number of undisturbed samples (UDS). Empirical equations 
offer a solution to reduce the cost, but the application of empirical equations to different sites can be 
questionable (Al-Taie et al., 2017). This paper explores a modern alternative named artificial neural 
networks (ANNs), and the utilization of ANNs is significantly increased in geotechnical engineering 
with success (Shahin et al. 2001). ANNs are superior in modeling complex relationships, making it 
an ideal tool for conditions which the variables' connections are elusive (Hubick, 1992).  

This study aims to create a model to predict compression index (Cc) using soil properties gathered 
from 347 undisturbed soil samples in Northern Jakarta. The model's performance is subsequently 
assessed using an additional 117 undisturbed soil samples, allowing for a comparative evaluation 
against other empirical equations. 

2 COMPRESSION INDEX 

The soil settlement calculation under structural load is the most important aspect besides checking 
the integrity of the structure. Settlement is defined as the decrease in soil volume due to water flowing 
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out of soil and particle re-arrangement under the effect of applied pressure. Compression index (Cc) 
is one of the parameters that is used to calculate settlement. High Cc value means the soil is more 
compressive (Dwivedi et al., 2016a).   

Oedometer test takes a lot of time, requires precision, precautions, and expertise in the process. 
Therefore, it is very tough to get ideal value of Cc. Furthermore, even a very small disturbance in the 
process can lead to overestimation or underestimation Cc value. Therefore, correlations are 
developed to limit time disadvantages of getting oedometer test results. Two popular correlations 
will also be compared for this study: 

𝐶௖ = 0.009(𝐿𝐿 − 10)  (Terzaghi & Peck, 1967) (1) 

𝐶௖ = 0.2343 ቀ
௅௅

ଵ଴
ቁ × 𝐺𝑠 (Nagaraj & Murty, 1985) (2) 

Although empirical correlations can provide a quick and inexpensive way to estimate soil parameters 
with simple tests, most of these correlations are derived from fitting data measurement made under 
specific site condition. This may cause large deviations when used at other sites (Dehghanian & Ipek, 
2022) 

3 ARTIFICIAL NEURAL NETWORK MODEL 

3.1 Artificial Neural Networks (ANNs) 

ANNs are artificial adaptive systems that are inspired by the functioning processes of human brain 
and nervous system (Grossi & Buscema, 2008). ANNs provide strong solutions to problems in 
several areas, including classification, prediction, filtering, optimization, pattern recognition, and 
function approximation. 

The biological nervous system is extremely complicated; artificial neural networks algorithms seek 
to simplify this complexity and focus on what may theoretically matter most from an information-
processing standpoint (Thakur & Konde, 2021). A comprehensive description of ANNs is beyond 
the scope of this paper. Many authors have described the structure and operation of ANNs (e.g., 
Hecht-Nielsen 1990; Maren et al. 1990; Zurada 1992; Fausett 1994; Ripley 1996). 

The fundamental of artificial neural networks (ANNs) lies on their constituent elements which is the 
artificial neurons or processing elements (PEs). These PEs operate on a simple mathematical model 
defined by three basic rules consist of multiplication, summation, and activation. Within the artificial 
neuron, the input values are subject to weighting, whereas each input is multiplied by an associated 
weight. In the core of the artificial neuron resides a summation function that aggregates all the 
weighted inputs along with a bias term. Finally, the cumulative result of the weighted inputs and bias 
undergoes an activation process, often referred to as a transfer function (Andrej et al., 2011) at the 
output of the artificial neuron. Figure 1 illustrates the operational principle of an artificial neuron. 

 
 

Figure 1. Working principles of an artificial neuron (left); Example of simple ANN network (right). 
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While the foundational principles governing this operation may appear deceptively simple, the true 
power and computational prowess of these models emerge when we begin to interconnect them 
within an artificial neural network (ANNs), as depicted in Error! Reference source not found.. 

This interconnectedness generates the ability of ANNs to modify their own connections over time, 
thereby initiating a learning process that characterizes the entire ANN (Hebb, 1949). This process of 
connection modification is often referred to as the 'Law of Learning.' Notably, the dynamism of an 
ANN is essentially linked to time. To facilitate the modification of connections, the ANN requires 
continuous interaction with its environment, typically represented by data, over extended periods 
(Rosenblatt, 1958). This learning process is a key mechanism that defines ANNs as adaptive 
processing systems. 

Neurons can be organized in any topological manner (e.g., one- or two-dimensional layers, three-
dimensional blocks, or more-dimensional structures), depending on the quality and amount of input 
data. The most common ANNs are composed in a so-called forward topology (Wasserman, 1989; 
Aleksandar & Morton, 1990). Therefore, type of ANNs also adopted in this study. A certain number 
of PEs is combined to an input layer, normally depending on the amount of input variables. The 
information is forwarded to one or more hidden layers working within the ANN. The output layer, 
as the last element of this structure, provides the result. The output layer contains one PE only, 
regardless the result is a binary value or a single number. Figure 2 represents the most popular 
architecture of neural networks; forward propagation (Fahlman, 1988; Le Cun, 1989). 

 
Figure 2 Forward Propagation neural network architecture. 

3.2 Activation Function 

Activation functions, also known as transfer functions, are instrumental in artificial neural networks. 
They convert input signals into outputs, which then serve as inputs for subsequent layers. Net inputs, 
central to the network's structure, undergo transformation into unit activations through these 
functions, constituting a scalar-to-scalar conversion (Sharma et al., 2020). 

The Leaky Rectified Linear Unit is employed as activation function for this study. Leaky ReLU is 
defined as: 

𝑓(𝑥௜) = ൜
𝑥௜, 𝑥௜ > 0

𝛼௜𝑥௜, 𝑥௜ < 0
   (3) 

𝑓ᇱ(𝑥௜) = ൜
1, 𝑥௜ > 0
𝛼௜, 𝑥௜ < 0

 (4) 
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Where 𝛼௜ is the coefficient of i-th channel for negative inputs, and it is a small constant, typically 
0.01 or so. Its output is not 0 for negative inputs, so it is the improvement of ReLU function for the 
problem “Dying ReLU” which encountered when ReLU is employed. It is straightforward for us to 
get its derivative. Figure 3 presents the function curve and its derivative curve. Because it can 
produce a constant times input value for negative inputs, compare to ReLU, where ReLU will not 
saturate for both directions (Feng & Lu, 2019). 

 
Figure 3 Leaky ReLU function curve (left); Leaky ReLU derivative curve (right) 

3.3 Back Propagation 

Back propagation is a fundamental technique employed in supervised learning and multi-layered 
training programs. It operates by leveraging errors both in the forward and backward propagation 
phases of neural network training (Izhari et al., 2020). This method involves adjusting the weights 
of a neural network based on error values obtained in previous epochs, emphasizing iterative 
refinement. Precisely tuned weights facilitate the reduction of error rates and enhance the model's 
reliability by expanding its predictive capabilities. 

The term "back propagation” is a concise way of denoting "backward propagation of errors," and it 
serves as a standard procedure for training artificial neural networks (Soemartono et al. 2018). The 
back propagation process involves several key steps: 

a) Error Rate Computation: This initial step requires calculating the discrepancy between the 
model's output and the actual target output. 

b) Error Minimization: Subsequently, the process verifies whether the error has been minimized 
effectively. 

c) Weight and Bias Updates: If the error exceeds an acceptable threshold, the weights and biases 
are updated accordingly. This cycle continues until the error converges to a satisfactory level. 

d) Neural Network Model Finalization: Once the error rate falls within an acceptable range, the 
neural network model becomes ready for deployment, enabling it to effectively forecast data. 

Figure 4 presents the workflows of back propagation mechanism (Sekhar & Meghana, 2020). 

In the context of facilitating the back propagation process, the gradient descent (GD) algorithm 
assumes a pivotal role. This iterative optimization technique, widely employed in ANNs, enables the 
gradual adjustment of parameters represented by θ, with the overarching objective of minimizing the 
error function J(θ) (Mustapha et al. 2020). Notably, the GD algorithm employs the entire dataset for 
each parameter update, a precision-focused approach that, while accurate, demands a substantial 
computational workload. 

In our study, we turn to the Adaptive Moment Algorithm (Adam) to efficiently navigate the 
optimization landscape. Adam is a sophisticated amalgamation of two prominent optimization 
methods, Momentum and RMSProp (Kingma & Ba, 2015) This algorithm excels in its ability to 
calculate adaptive learning rates tailored to each parameter. Optimization continues until the 
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objective function reaches its minimum, which corresponds to the smallest deviation between the 
predicted values and the test set values. 

Overall error (δ) =  
∑ (୶౩౛౪,౟ି୶౦౨౛ౚ౟ౙ౪౛ౚ,౟)౤

౟సభ

୬
  (5) 

 

Figure 4 Flow diagram of back propagation mechanism. 

3.4 ANN Model Design 

The dataset utilized for the training phase in this study comprised 347 undisturbed cohesive soil 
samples collected from multiple projects in northern bay area of Jakarta. This dataset incorporated 
three essential index properties as variables: specific gravity (Gs), liquid limit (LL), and plastic limit 
(PL). The objective is to employ these variables as inputs to predict the compression index (Cc) using 
Artificial Neural Networks (ANNs). ANN model was developed using Visual Basic for Application 
(VBA) in Microsoft Excel program. The VBA comprised algorithms as described in Chapter 2 using 
8 hidden layers with 7 neurons in each hidden layer and Adam Optimizer.  To assess the performance 
of the model, a separate test set comprising 117 samples contained similar properties as dataset were 
employed. Figure 5 provides a snapshot of compression index (Cc) from the dataset and test set in 
this study. 

 

 

Figure 5 Compression index (Cc) from dataset (left); Compression index (Cc) from test set (right).  
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4 RESULT AND DISCUSSION 

4.1 Training Phase 

Training phase aimed to check the suitability of ANN model to predict Cc values. This was measured 
by comparing the overall error (δ) calculated using formula (5) between ANN model and reference 
equations. Figure 6 presents the calculated Cc by employing those equations compared with Cc from 
laboratory tests (data set). Whereas Figure 7 depicted similar features but for the created ANN model.  

Notably, the bold black line represents the calculated or predicted Cc values that exactly align with 
the laboratory test (y = x), while the dotted line represented the trend line of results, originating from 
the intercept point at (0,0). It shall be noted that the features of a trend line, gradient and R-squared 
(𝑅ଶ), could not be a suitable indicator. The reason is that these values were measured relative to its 
own trendline and not to the y = x line; hence, it is not the best performance reflection of a model. 
This is proven from Figure 6 which shows that although the trendline from Nagaraj’s equation model 
has lower gradient value and 𝑅ଶ than Terzaghi’s, it has a lower overall error and becomes more 
suitable in this case. 

Therefore, overall error (𝛿) of a model, which considered all the deviation for every single data point, 
was adopted as the indicator to determine the suitability of a model. The lower the value means the 
better the accuracy of a model.  

ANN model resulted δ of 38.9%. This value was lower than that of the equations, Terzaghi’s and 
Nagaraj’s, with numbers 55.9% and 43.2%, respectively. This implies that ANN model produced a 
better accuracy than that of equations. In addition to that, for higher Cc values (larger than 1.5), ANN 
model can predict better than the empirical formulas. These findings provided a solid basis to verify 
that ANN model is suitable to predict the Cc values. 

 
Figure 6 Calculated Cc from equations based on data set. 
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Figure 7 Predicted Cc from ANN model based on data set. 

4.2 Testing Phase 

After the training phase, the trained ANN model was employed to predict the Cc values. These values 
then compared with Cc from the test set (117 data). Similar method was also conducted for models 
based on the equations. Figure 8 displays the results distribution for the ANN model and equations. 
The reference model, based on equations, resulted δ of 38.1% for Terzaghi’s equation and δ of 30.5% 
for Nagaraj’s. While the trained ANN model produced δ of 29.6%, smaller compared to the 
equations. This showed that the ANN model aligned with result during training phase, therefore 
applicable for determining Cc.  

 
Figure 8 Calculated Cc compared to testing set. 
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5 CONCLUSION AND RECOMMENDATION 

ANN model is proven to give a promising alternative solution to predict the value of compression 
index (Cc). ANN examination provides good prediction compared to existing empirical formulas. In 
addition, the ANN model is developed by considering the typical soil condition in particular area, in 
this case North Jakarta’s Bay whereas the empirical formula is not suited to North Jakarta’s 
conditions. 

Further studies could improve this model’s reliability by exploring other activation functions or other 
gradient descent algorithms.  
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