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ABSTRACT Cement-treated ground by deep cement mixing has been used for several geotechnical 
structures widely. In quality assurance processes of this method, statistical parameters, mean and standard 
deviation, of unconfined compressive strength of cement-treated soils are used. The mean and standard 
deviation are normally used to assure the quality of the improved ground. These parameters evaluated from 
core strength data are the sample statistical parameters, indicating these parameters involve the statistical 
uncertainty. Thus the evaluation of the statistical uncertainty is needed when assuring the quality of the 
improved ground precisely. Moreover, the spatial correlation exists in core strength data. The statistical 
uncertainty emerging in the evaluation of the population statistical parameters is possibly affected by the 
spatial correlation. This paper presents the statistical analysis of core strength data observed in several deep 
cement mixing projects. The mean, standard deviation, and autocorrelation distance, were adopted as the 
statistical parameters of the strength. The type of the probability distribution of the core strength was 
investigated by the Kolmogoronv-Smirnov (K-S) test. The goodness fit of the normal and log-normal 
distributions was examined against the core strength data. The autocorrelation distance, which is the 
parameter representing the characteristic of the spatial correlation, was calculated from the distribution of the 
core strength using the maximum-likelihood method. The statistical uncertainty of the statistical parameters 
was evaluated using a Bayesian inference approach. In the Bayesian inference approach, a Markov chain 
Monte Carlo method was adopted to calculate the realizations of the population statistical parameters. The 
analysis results indicated the statistical uncertainty included in the statistical parameters is significantly 
affected by the spatial correlation. 

KEYWORDS Deep Cement Mixing; Core Strength; Statistical Analysis; Spatial Variability; Statistical 
Uncertainty 

 

 

1 INTRODUCTION 

Cement-treated ground by deep cement mixing has been used for several geotechnical structures 
widely. In quality assurance processes of this method, the unconfined compressive strength quf of 
cement-treated soils retrieved from the improved ground, core strength, is measured and its statistical 
parameters, mean and standard deviation, are adopted to check the strength of the constructed 
ground. Since the mean and standard deviation of core strength are sample statistical parameters, 
these values include statistical uncertainty emerging in the evaluation of the population 
statistical parameters. Moreover, the strength of deep cement mixing ground has a spatial 
correlation (Namikawa and Koseki 2013). The statistical uncertainty could be affected by the spatial 
correlation. Thus in the quality assurance procedure, the spatial correlation of the core strength 
should be considered when using the statistical parameters.  

In the evaluation of an overall performance of the cement-treated ground in quality assurance 
processes, the spatial variability and the statistical uncertainty should be considered properly. The 
author has proposed the analytical approach for evaluating the overall strength of the cement-treated 
ground when considering the spatial variability and the statistical uncertainty simultaneously 
(Namikawa 2021; Namikawa 2022). These previous studies indicated that the both uncertainties are 
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important to evaluate the variability of the predicted overall strength of the cement-treated ground. 
However, there is little study on the statistical uncertainty including in the statistical parameters 
observed in real projects. 

This paper presents the statistical analysis of the core strength data observed in several deep cement 
mixing projects. The mean quf, standard deviation quf, and autocorrelation distance quf of quf of 
cement treated soils were evaluated as the statistical parameters. quf represents the spatial correlation 
of quf. The maximum-likelihood method was used to evaluate quf from the core strength 
distributions. The type of the probability distribution of quf was investigated by the Kolmogoronv-
Smirnov (K-S) test. The goodness fit of the normal and log-normal distributions was examined for 
quf. Moreover, a Bayesian inference approach was used to evaluate the statistical uncertainty 
involved in the statistical parameters. In this approach, the posterior distribution of the statistical 
parameters was inferred from the observed core strength data and the prior distributions of the 
statistical parameters. A Markov chain Monte Carlo (MCMC) method was used to calculate the 
realizations of quf, quf, and quf. The analysis results provide quantitatively the statistical uncertainty 
emerging in the evaluation of quf, quf, and quf. 

2 STATISTICAL CHARACTERISTIC OF CORE STRENGTH DATA 

2.1 Core Strength Data 

The core strength data obtained in 4 deep cement mixing projects (Namikawa and Koseki 2013; 
Babasaki and Suzuki 1996; Onimaru et al. 2009) were analyzed here. Figure 1 shows the distribution 
of the core strength data used in this study. Three core boring data were obtained in project A.  In 
this site, since the upper deposit is sand and the lower deposit is clay, the data were separated into 
the cement-treated sand and clay at each boring. 

2.2 Statistical Parameters 

The sample statistical parameters of quf are summarized in Table 1. In project A, in addition to 
analyzing each core boring data separately, three core boring data are analyzed together. In project 
B, two core boring data are analyzed separately, because the cement columns were constructed with 
different cement contents.  

The sample mean squf of the core strength of cement-treated sands ranges from 5.4 MPa to 10. 5MPa 
and that of cement-treated clays ranges from 2.8 MPa to 6.1MPa. squf of the cement-treated clay is 
smaller than that of the cement-treated sand. The coefficient of variation sVquf of the core strength of 
cement-treated sand for a single column ranges from 0.20 to 0.37 and that of cement-treated clay  

Table 1. Sample statistical parameters of core strength data 

Project Boring No. Soil Nb n squf squf sVquf squf 

A 

A-1s Sand 1 17 5.4 MPa 1.3 MPa 0.25 2.2 m 
A-1c Clay 1 19 2.9 MPa 1.2 MPa 0.40 0.44 m 
A-2s Sand 1 20 5.4 MPa 1.1 MPa 0.20 1.2 m 
A-2c Clay 1 21 4.2 MPa 0.95 MPa 0.23 0.26 m 
A-3s Sand 1 18 10.5 MPa 3.2 MPa 0.31 2.1 m 
A-3c Clay 1 29 6.1 MPa 1.7 MPa 0.27 1.1 m 
A-123s Sand 3 55 7.1 MPa 3.2 MPa 0.45 4.8 m 
A-123c Clay 3 69 4.6 MPa 1.9 MPa 0.41 1.5 m 

B 
B-1 Clay 1 48 2.8 MPa 0.74 MPa 0.27 0.21 m 
B-2 Clay 1 14 3.0 MPa 0.83 MPa 0.27 0.37 m 

C C-1 Sand 1 18 6.3 MPa 2.4 MPa 0.37 3.1 m 
D D-1 Clay 1 36 4.8 MPa 1.1 MPa 0.22 0.27 m 

Note: Nb = number of core boring; n = sample size; squf = sample mean of core strength; squf = 
sample standard deviation of core strength; sVquf = sample coefficient of variation of core strength; 
squf = sample autocorrelation distance of core strength   
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Figure 1. Distribution of core strength quf 

ranges from 0.22 to 0.40. The sVquf values of cement-treated sand dose not significantly differ from 
those of cement-treated clay. sVquf for the three boring data (A-123s and A-123c) is larger than that 
for the single boring data in project A. This is because there is a large difference in the squf values 
of three cement-treated soil columns. 

2.3 Probability Distribution 

The probability distribution type of quf was investigated by the Kolmogoronv-Smirnov (K-S) test 
(Kanji 2006). The goodness fit of the normal distribution and log-normal distribution was examined 
for quf. Table 2 shows the K-S test results. The D statistic is defined as  

𝐷 = max|𝐹(𝑥) − 𝑆௡(𝑥)|   (1) 

where F(x) is the target cumulative distribution function with the sample mean and variance and 
Sn(x) is the sample cumulative distribution function. Since the D statistic is a maximum value of the 
difference between the sample and target cumulative distributions, the smaller value of D statistic 
indicates the better fit of the data. The D statistic in Table 2 shows that the normal distribution is 
better against the probability distribution of quf at some columns and the log-normal distribution is 
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better against the probability distribution of quf at other columns. The P-value is the threshold value 
of the significant level. When a value is less than the P-value, the null hypothesis for the goodness 
fit will be accepted. Except for A-123s, the P-values of the both distributions are larger than 0.1, 
indicating that the both distributions are acceptable for the probability distribution of quf at the 10% 
significant level. The K-S test results suggest that the both distributions are possibly adopted for the 
probability distribution of quf.  

Table 2. Kolmogoronv-Smirnov (K-S) test result 

Project Boring No. Soil 
Normal distribution Log-normal distribution 
D-value P-value D-value P-value 

A 

A-1s sand 0.148 0.799 0.182 0.563 
A-1c clay 0.206 0.348 0.167 0.606 
A-2s sand 0.096 0.984 0.135 0.810 
A-2c clay 0.190 0.386 0.156 0.633 
A-3s sand 0.136 0.852 0.137 0.844 
A-3c clay 0.145 0.526 0.196 0.188 
A-123s sand 0.196 0.025 0.112 0.459 
A-123c clay 0.095 0.537 0.083 0.701 

B 
B-1 clay 0.076 0.946 0.096 0.769 
B-2 clay 0.139 0.917 0.184 0.651 

C C-1 sand 0.194 0.508 0.195 0.502 
D D-1 clay 0.115 0.726 0.112 0.756 

2.4 Autocorrelation Distance 

The autocorrelation distance quf was adopted as a statistical parameter to represent the spatial 
correlation of the core strength quf. A stationary random field was assumed for the spatial variability 
of quf. The exponential function was adopted for the correlation coefficient (d) of quf. That function 
is expressed as 

𝜌(𝑑) = exp ൬−
ௗ

ఏ౧౫౜
൰   (2) 

where d is the distance between the two points. The maximum-likelihood method was used to 
estimatequf. A multivariate normal distribution was selected for the probability distribution of quf. 
The multivariate normal distribution is expressed as  
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where C is the matrix of correlation coefficient, n is the number of quf and ri is the space vector of 
the point i. The log-likelihood function Lz(quf) is defined as  

𝐿𝑧൫𝜃୯୳୤൯ = −
௡

ଶ
ln൫2𝜋𝜎୯୳୤

ଶ ൯ −
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୘
𝐂ିଵ൫𝐪𝐮𝐟 − 𝛍𝐪𝐮𝐟൯   (4) 

In maximum-likelihood method, the maximum-likelihood estimate of quf is the quf value at the 
maximum value of Lz(quf). Figure 2 shows that the calculated values of Lz(quf) for B-2 in project 
B. In this figure, the evaluated optimal value for quf is 0.37 m. Table 1 shows that the evaluated 
optimal values for the sample autocorrelation distance squf. The squf values calculated from the 
single column data ranges from 0.21 m to 2.2 m. Assuming no horizontal correlation of quf between 
the three borings, the squf values were calculated for A-123s and A-123c. The squf values for A-
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123s and A-123c are larger than those for the single column data. It is inferred that the large 
difference in the squf values of the three core borings induces the large value of squf.  

The relationships between the sample coefficient of variation sVquf and the sample autocorrelation 
distance squf is shown in Figure 3.  It can be seen that squf of the cement-treated sand is larger than 
that of the cement-treated clay. This indicates that the spatial correlation of the cement-treated sand 
is stronger than that of the cement-treated clay. Figure 3 also shows that squf increases with sVquf. 
This indicates that the strong spatial correlation possibly induces the large variability of quf. 

Figure 2.  Log-likelihood function Lz(quf) for data Figure 3.  Sample autocorrelation distance squf 

3 STATISTICAL UNCERTAINTY IN STATISTICAL PARAMETERS 

3.1 Evaluation Method of Statistical Uncertainty 

Table 1 shows the sample statistical parameter values. The statistical uncertainty emerges in inferring 
the population statistical parameters from the sample values. The Bayesian inference approach 
proposed by Namikawa (2019) was used to evaluate the statistical uncertainty for the mean quf, 
variance quf

2, and autocorrelation distance quf. In this approach, realizations of the population 
statistical parameters were generated using the MCMC method (Gamerman and Lopes 2006). The 
outline of the used approach is explained in the following section. 

3.2 Bayesian Inference Approach 

According to the Bayesian inference approach (Gelman et al. 2014), the population statistical 
parameters, quf, quf

2, and quf, are defined as the joint probability distribution as  
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where p(quf |quf,quf
2,quf) is the probability distribution of quf under the given statistical parameters, 

and p(quf), p(quf
2), and p(quf) denote the prior distributions of quf, quf

2, and quf. The posterior 
distribution defined by Equation (5) represents the probability distribution of the population 
statistical parameters inferred from the known core strength values.  

The probability properties of quf, quf
2, and quf are difficult to obtain from the joint probability 

distribution p(quf,quf
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When the prior distribution is selected to be a natural conjugate distribution against the posterior 
distribution, the realizations of the parameters are obtained from the conditional posterior 
distribution directly. Since normal and inverse gamma distributions are natural conjugate 
distributions against the posterior distribution of quf and quf

2, these distributions are selected for 
p(quf) and p(quf

2). The truncated normal distribution is selected for p(quf).  That distribution is not 
a natural conjugate distribution against the posterior distribution of quf. In the MCMC procedure, 
the quf and quf

2 values were sampled by a Gibbs sampler and the quf values were sampled by a 
Metropolis-Hastings algorithm. Namikawa (2019) has provided a detail description of the Bayesian 
inference approach adopted in this study.  

The statistical parameters of the prior distribution were selected based on the past study (Namikawa 
2019). The mean of quf is 4 MPa and the standard deviation of quf is 2 MPa. The mean of quf

2 is 1 
and the standard deviation of quf

2 is 1. The mean of quf is 1m and the standard deviation of quf is 
1m. 

3.3 Analysis Results 

An example of the population statistical parameter quf drawn by the MCMC method is shown in 
Figure 4. The quf values in this figure were inferred from the data of quf for B-1. The inferred 
population statistical parameters vary significantly, indicating that a large statistical uncertainty 
emerges in the evaluation of the population parameters. 

 
Figure 4. quf drawn by the MCMC method for B-1 

In all cases, 11000 realizations were drawn for the three parameters. The initial 1000 values were 
discarded in the calculation to reduce the effect of the starting values. The drawn values of quf, quf

2, 
and quf are summarized as box plot graphs in Figure 5. The variation of the drawn values differs in 
each case. This indicates that the statistical uncertainty varies with the observed data. The spatial 
correlation and the sample size may affect the statistical uncertainty. The factors affecting the 
statistical uncertainty will be discussed in the following sections. 

The mean values quf, quf, and quf of quf, quf, and quf drawn by the MCMC analysis were 
compared with the sample statistical parameters, squf, squf, and squf. The comparison of these 
values are shown in Figure 6. The mean values quf of quf agree approximately with the sample 
mean values squf in the all cases except the A-3s case. In the MCMC analysis, the mean of the prior 
distribution of quf is 4 MPa. Since squf for the A-3s case is much larger than that value, the prior 
distribution may affect the analysis result for the A-3s case. The mean values quf of quf are lower 
than the sample autocorrelation distance squf for the A-123s and C-1 cases.  In the MCMC analysis, 
the mean of the prior distribution of quf is 1m. Since squf for these cases is much larger than that 
value, the prior distribution may affect the analysis result for these cases. Figure 6 indicates the mean 
values of the statistical parameters drawn in the MCMC analysis agree approximately with the 
sample statistical parameter values when the sample statistical parameter values do not differ 
significantly from the parameter values of the prior distribution. 
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Figure 5. Box plot of mean quf, variance quf

2, and autocorrelation distance quf values drawn by the MCMC method 

 
Figure 6. Comparison between sample statistical parameters, squf, squf, squf and mean of population statistical 
parameters quf, quf, quf 

3.4 Effective Sample Size 

The sample size n affects the statistical uncertainty emerging in the evaluation of the population 
parameters. When the data has the spatial correlation, the effective sample size ne that practically 
affects the statistical uncertainty depends on the sampling distance and the autocorrelation distance 
(Cressie 1993). The effective sample size ne is defined as  
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where Cij is the (i, j) element of C.  

Assuming that quf follows the normal distribution, an estimator of the standard deviation equf of 
quf evaluated from the data with ne is represented as  
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Assuming that quf corresponds to squf, Equation (4) is written as 

𝑒𝜎ஜ୯୳ =
௦ఙ౧౫౜

ඥ௡೐
  (9) 

Using Equations (7) and (9), the standard deviation of quf that represents the statistical uncertainty 
included in the estimation of quf can be simply estimated from the data of quf. 

The standard deviation quf of quf was calculated from the MCMC analysis results. The comparison 
between quf and equf is shown in Figure 7. equf corresponds reasonably to quf in all cases 
except the A-3s, A-123s and C-1 cases. The mean inferred in the MCMC analysis is lower than the 
sample mean for A-3s and the autocorrelation distance inferred in the MCMC analysis is lower than 
the sample autocorrelation distance for the A-123s and C-1 cases (see Figure 6). It is inferred that 
the low value of the mean or the autocorrelation distance estimated in the MCMC analysis induces 
the low value of quf for these cases. Figure 7 indicates that the statistical uncertainty of quf can be 
simply estimated from the sample standard deviation and the effective sample size when the sample 
statistical parameters do not differ significantly from those of the past data which is used for the prior 
distribution. 

 
Figure 7. Comparison between estimator of standard deviation equf of quf and standard deviation quf of quf drawn in 
MCMC analysis 

4 CONCLUSIONS 

The statistical analysis of the core strength observed in several deep cement mixing projects was 
conducted in this study. The mean quf, standard deviation quf, and autocorrelation distance quf were 
evaluated as the statistical parameters of the unconfined compressive strength quf. The type of the 
probability distribution of quf was investigated by the Kolmogoronv-Smirnov (K-S) test. The K-S 
test results indicated that the normal and log-normal distributions can be adopted for the probability 
distribution of quf. Assuming that quf follows the normal distribution, the statistical uncertainty 
involving in the population parameters was evaluated using a Bayesian inference approach. MCMC 
method was adopted to calculate the realizations of the population statistical parameters. In the 
Bayesian inference analysis results, the statistical uncertainty emerges considerably when evaluating 
the population statistical parameters from the core strength data. The effective sample size ne 
representing the number of the independent samples is a key factor for the amount of the statistical 
uncertainty. The standard deviation of quf could be reasonably estimated from the sample standard 
deviation and ne. The proposed method for evaluating the statistical uncertainty provides the useful 
information when assuring the strength of the deep cement mixing ground. 
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